Information Sciences and Computer Engineering, Vol. 1, No. 2, (2010) 42-47

I International Journal of
PHARUS

Information Sciences and Computer Engineering

journal homepage: http://www.ijisce.org

New Aspects of Implementing a Distributed System

Marius-Constantin Popescu®*, Cristinel Popescu®

4 Faculty of Mathematics and Informatics, University of Craiova, Romania
b Constantin Brancusi University of Targu-Jiu, Romania

Abstract— Nowadays the implemented distributed systems have architectural
varieties which have similar characteristics and development problems. This
paper presents the architectural detail of a distributed system and the con-
cepts which enable the development of distributed applications.

Keyword: Distributed system, “ball on beam” process, Lab Windows
implementation.

1. Introduction

In the last decade, the concept of distributed system was as-
signed as the most powerful computing system, increasingly re-
placing the old systems [1, 2, 3]. Evidence indicates that over
99% of applications that require a massive volume of mathe-
matical operation and which before were designed without any
doubt to high power computers now can be run with far supe-
rior results to distributed computing systems [4, 5]. A major
reason in the development of distributed systems was their low
cost because in most of the cases computers or components may
be usual PCs linked together to achieve a distributed computing.
Design and implementation of distributed systems requires mod-
els, techniques and proper ways communication, adapted to the
requirements and restrictions arising from the nature of applica-
tions [6, 7, 8, 9].

This work aims at presenting concepts to enable the develop-
ment of distributed applications and designing an architecture us-
ing Lab Windows / CVI product of National Instruments Com-
pany [10].

2. Proposed

Description of distributed systems: Managing processes de-
velop a lot of complex algorithms that require a lot of informa-
tion about the process and also processing these information is
very complex and must be performed in real time [11, 12, 13].
This requires a horizontal distribution of performing tasks by sev-
eral smart devices (microprocessor systems), which corresponds

*Corresponding author:
Email address: popescu_ctin2006@yahoo.com, Ph: +40 745438287

to dividing the process into several independent sub processes.
The general objective pursued in the architectural design of the
system aims to design a structure able to meet present or future
requirements; to be sure that operating system is adaptable, man-
ageable and efficient. A good architectural design will be trans-
late into a simple to implement, test and change system. Based
on microprocessor, digital equipment for management of indus-
trial processes began to fill but also to replace analog equipment.
An obvious advantage of digital equipment, in addition to flex-
ibility, is that it can easily interconnect with each other through
communication lines industry.

Models of allocating work tasks in a distributed system are re-
flected directly on the performance and efficiency of the resulted
system [14, 15]. Locating the components of a distributed system
is determined by issues of performance, operating safety, secu-
rity and costs. Starting from this, to ensure safety requirements
in operation, increase system reliability, increase the processing
information speed, optimal management of industrial processes
have been built distributed and hierarchical management systems
as in Figure 1.

By working in parallel information with more process equip-
ment, is obtained a smaller total processing time (it tends to real
time restriction) and also obtain a reduction of equipment com-
plexity, leading to an increased reliability for automation equip-
ment as a whole.

Ranking algorithms for data processing on vertically is real-
ized in the way that complex algorithms (time consuming) depart
from the direct management of the process, while simple algo-
rithms are closer to the direct management of the process. A pos-
sible hierarchical and distributed structure on 5 levels is shown in
Figure 2.

Within this structure can be seen a modular assembly, in which
communication between devices on the same level and between
levels is achieved by specialized bus just to increase the speed
of vehicular information. This distributed management ensures a
distribution of tasks and also a specialized driving equipment or
software, which allows parallel processing of information leading
to increase speed of assembly work. Each level out a category
of specific tasks and also provides levels specialization such as
hardware equipment and application programs.

Popescu and Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

43

! Hierarchical E . o
: Hierarchization
and : of processing
distributed information
system
< Diustribution of data acqusition and process control >
Subprocess 1 BuUbprocess 2 Subprocess
. Tehnological process .

Fig. 1. The principles of a distributed and hierarchical system.

Leveld

Planning and

Central
computer

production level systetn

" Lewel 3 .
Coordinator . Coordinator
Coordinating and
computer . computer
manage production
system system

4/' - LE—'VE—']. 2 - .
Superviser Superviser T Superviser Superviser
ter Cotmputer Mumtun_ng and Cotmputer computer
compl P SUpErvsmg P P
system system production system system
Lewel 1 f \ / !\
Control, alarm and pF pF pF pF
protection system) fsystem) system syste
Level 0

Transducers and EE

Tehnological sub process 1

Basic level

Transducers and EE

Tehnological sub process n

Fig. 2. A hierarchical and distributed structure.

Description of “Ball on Beam” process: In Figure 3 can be seen
the ’ball on beam” process that was chosen for practical imple-
mentation of distributed system. We could choose any process
but we decided on this because is the last we studied and we want
to improve his control using a distributed system. The objective
of this system is math modeling of a free movement of a ball on
a bar, to implement a control system of position. The movement
is initiated by balancing the bar with a DC motor, located at one
end of the bar, which is designed to compensate for the position
of the ball [16].

The system is implemented using state reaction. From the de-
scription of objects as state variables, it is known that state vari-
ables are successive derivatives on higher order of output, vari-
ables that are within the process or object to manage. If these
variables are measurable then we can achieve a control system
with state feed back [17]. The main advantage is that such a
structure takes into account changes of all states and not only of
one state (the exit). All state vector components are available
(measurable). Under these conditions, entry in the comparison
element (the reaction way) is considered proportional to the vec-
tor of state:

u=-k-x (D

44 Popescu and Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

Fig. 3. “Ball on beam” process.

The control structure of “Ball on Beam” process that will be
implemented is presented in Figure 4.

Implementing “Ball on Beam” as a distributed system: The
Transmission Control Protocol/Internet Protocol (TCP/IP) suite
is a set of protocols that govern how data is transferred between
networked computers [18]. TCP/IP is the primary protocol of the
Internet, the Web, and many private networks and local area net-
works. Networking components rely on TCP transport for many
activities, including the following operations: internet access us-
ing HTTP, access to remote file servers and printers, Distributed
Component Object Model (DCOM) services. Typically, network
communication using TCP involves client-server architecture. A
client or server can be any device on the network identified by a
logical IP address. Before creating a TCP network connection,
the server application must register on the network. Registration
establishes the port through which client applications can access
the server. After registration, the TCP server application listens
on the network for incoming client requests. To issue a request
to a server, the client must know the name or network address of
the host machine on which the server application is running and
the server port number.

When a server receives a request, it processes the request
and replies to the client. Figure 1 shows the interaction be-
tween a TCP server and TCP client application. Because TCP is
connection-based, the server and client must connect with each
other before they can exchange data.

Figure 5 shows how to use the Lab Windows/CVI TCP Sup-
port functions to create a TCP server and client. The com-
munication process begins when an application registers itself
as a valid server. The client then connects to the server us-
ing the port number specified in the server registration func-
tion. When the client connects to the server, the server ap-
plication receives the TCP_.CONNECT event. Once the con-
nection is established, both the server and the client applica-
tions can receive TCP_DATAREADY events, which indicate to
the applications to call their respective read functions. When
the server disconnects from the client, the client application re-
ceives the TCP_DISCONNECT event. Similarly, when the client
disconnects from the server, the server application receives the
TCP_DISCONNECT event. The client and server applications
also can receive the TCP_DISCONNECT event if the connection
terminates because of an error. You can use TCP only for one-

to-one communication. You can connect a server or client appli-
cation to several other client or server applications concurrently;
however, only one server and one client can exchange data in a
single communication session.

In the Lab Windows/CVI TCP Support Library, a conver-
sation handle represents an individual communication session.
In a client application, the ConnectToTCPServer and Connect-
ToTCPServerEx functions return conversation handles when the
client connects to the server application [19]. In a server appli-
cation, the Lab Windows/CVI TCP Support Library passes the
conversation handle to the TCP callback function when the func-
tion receives a TCP_CONNECT event, which occurs when a new
client connects to the server.

As an example we use “Ball on beam” process, which control’s
is realized using state feed back.

The state vector x used in its transposed form is given by rela-
tion:

x=[Aa Aa Al A", ¥))

so will have the following equivalents:

X1 = Aa
X2 = Aa
x3 = Al 3)
X4 = Al

As it can be observed from figure, the system output is given
by:

X1
X2
X3
X4

y=Al=[0 0 0 1])

Popescu and Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010 45

=10 Ulty=-kxi't)

L 4

AT Lit)
ARBCD

®2

ﬂ&'if} Mals)

X1

% Ll

AN | A

Kl#u
[
[
| Es |=
[
: Esz |«
[
[
—— K4 |*
[

SERVER

CLIENT

Fig. 4. The control structure of “Ball on Beam” process.

Server

FegisterTCPEerver Ex
.-._I

¥

TCF Server Callback

TCP CONNECT.
M client is connecting ™/

ServerTCP Read

TCP DATAREADY. TCP

Client

ConnectToTCP2erverEx

TCF Client Callback

TCP DATAREADTY
ClientTCPRead

I

TCP DISCONNECT:
fclient disconnected *f
|

¥

ServerTCPWrite

¥

MnregisterTCPServerEx

TCP DISCCNMECT.
™ server disconnected ™/

¥

¥

ClientTCPWrite

¥

DizconnectFromTCP Server

Fig. 5. Lab Windows/CVI TCP Support Functions.

On server will implement the state reaction, the effective con-
trol of the selected system, and on client computer will imple-
ment the process. Basically our system of regulation will be
distributed using Lab Windows / CVI through client and server
applications. To realize distribution more steps that are presented
below are required.

Convention: To make the application more accessible will use
separate files for each function used. These files have the exten-
sion .h and are included in the source file whose extension is .c.

Transmitting and receiving information are essential for distri-
bution operations. Thus for the server application will use a func-

46

§8 o 53] 35 2 75

RISER L

Popescu and Popescu/Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

o e dn we de e W

e s M s W o e e

v dn W0 o s ok e W e
O N B B

L T B

e w0 N am s

i &0 s &0 0 W e e

L L
iu:nshdusduidu-'n

Fig. 7. Server interface.

tion to receive data from the client called reception_from_client.
Data can be sent by the client only when its program has called
function dealing with this task, named transmission_to_server.
Note that transfer data between the client and server is based on
the TCP interrupt. For selected process data received from the
client are the 4 states of state vector which are read from the pro-
cess: x; = Aa which is the angular velocity of rotation of the
bar, x, = Aa which is the angle between the horizontal and bar,
x3 = Alwhich is the speed with who the bal is moving on the
fixed pivotal and x4 = Al the distance from the fixed pivot. A
second operation necessary to achieve the desired distribution is
the transmission of data from the server to the client performed
with function transmission_to_client and the reception with re-
ception_from_server function. Data to be sent to the client are:
reference specified by parameter Al; and system error (com-
mand). It must be specified that entry into comparison element,
as we observe in Figure 8, is considered proportional to the vector
of state:

u=-K- (5)

where K is the state reaction matrix (usually is generated using
Matlab environment).

x?

3. Simulation

In Figure 6 and Figure 7 are presented the interfaces used for
implementing the distributed system using Lab Windows envi-

ronment and TCP/IP client/server communication.

First of all we connect the client to server so that the connec-
tions led are green. Then we start the application from server
pressing the StartAplicatie button. The button afisare_locala is
used if we want to see the graphics on the interface. As an ad-
vantage if we don’t push it, the transfer speed will increase so the
transfer of data will be made quickly.

The client receives information from the process (the states
X1, X2, X3, X4) and through his functions sends the information to
server. When receives data, server analyze and elaborate through
his functions the control law (multiply states with ki, ks, k3, k4
coeflicients, compare the results with reference and elaborate the
control law). After this, server sends its result to the process and
this situation repeats. So the control of our process is realized
using this distributed application. Another important thing is that
we can run the application using only one computer but this is
indicated only if we simulate the process as we did, not if we
have a real one.

On the client interface, under connection status led we have
information about client and server name and about the IP from
the computers containing the server and the client. If we simulate
the process on the client interface we have the button COM_REF
similar with a potentiometer from where we send different com-
mands to server (position where we want to place the ball on bar).
On graphics with blue lines we have the command (the 4 states)
and with red lines we have the results that server elaborate and

send to client. We can easily observe that results are following
reference and that stationary error is null. The simulation ends
when pressing Quit button from server interface.

4. Conclusion

Distributed systems offer several advantages such as exchang-
ing information, sharing resources, increased security in opera-
tion and most important advantage: performance improvements.
Distributed design of processes leads to higher reliability for au-
tomation equipment as a whole. Algorithms used in distributed
systems (as in all systems) must be fair, flexible and efficient.
Linearization reaction tends to cancel the non-linearity of a non-
linear system so that the closed loop system dynamics have the
linear form. Central to this approach is to algebraically transform
nonlinear system dynamics (or partially) in some linear so that it
can be applied to linear control techniques.

The control structures with reaction by state variables are ex-
tremely important, their result consist in an outstanding perfor-
mance as precision, response time, speed, but are harder to im-
plement. TCP/IP is the primary protocol for the Internet and
many local or private networks. Normally, communications us-
ing TCP, involves client-server architecture. Lab Windows/CVI
real-time environment is particularly useful in implementing dis-
tributed systems due to its client-server application.

References

[1] F Boian, “Programarea distribuita in internet,” Editura Albastra,
Cluj-Napoca, 1998.

[2] G. Coulouris, J. Dollimore, and T. Kindenberg, Distributed
Systems- concepts and design. Addison-Wesley, 2002.

[3] D. Grigoras, Modele de calcul distribuit. lal, Romania: Editura
Specturm, 1999.

[4] O. Olaru, M. Popescu, L. Popescu, F. Grofu, and A. Mihailescu,
Sisteme de reglare automata - Teorie si aplicatii. Editura SITECH
- Craiova, 2001.

[5] M. Sloam and J. Kramer, Distributed Systems and Computer Net-
works. Prentice Hall, 1987.

[6] F. Grofu, M. Popescu, and L. Popescu, “Data acquisition system
for vibration signal,” in International Journal of Computers, Com-
munications & Control, (Oradea, Romania), pp. 251-255, CCC
Publications, June 2006.

[7]1 O. Olaru, M. C. Popescu, and V. Balas, “A study of oscillation
for signal stabilization of nonlinear system,” Proceedings of the
10" WSEAS Int. Conf. on Automation & Information, pp. 430—437,
March 2009.

[8] J. J. E. Slotine and L. Weiping, Applied Nonlinear Control. Pren-
tice Hall, 1991.

[9] A. Tanenbaum, Reele de calculatoare, Editura Byblos, editia a IV-
a. 2004.

[10] National Instruments CVI,
http://www.natinst.com/cvi.

[11] O. Olaru, L. Popescu, and M. Popescu, “Sistem modern de
reglare automata a turatiei unui motor de curent continuu realizat
cu microcontrollerul pic 16f84,” in International Conference on
Naval and Marine Education, (Constanta), pp. 190-196, Roma-
nian Naval Academy, November 2002.

[12] M. C. Popescu, E. V. Balas, M. M. Balas, and O. Olaru, “Algorithm
for virtual reality,” Proceedings, 4 International Symposium on

Home Page:

Computational Intelligence and Intelligent Informatics, pp. 125—
128, October 2009. IEEE Catalog Number: CFP0936C-CDR, Li-
brary of Congress: 2009909581.

[13] M. C. Popescu, A. Petrior, and A. Drighiciu, “Fuzzy control algo-
rithm implementation using labwindows — robot,” WSEAS Trans-
actions on Systems Journal, vol. 8, pp. 117-126, January 2009.

[14] M. C. Popescu and N. Mastorakis, “Testing and simulation of a
motor vehicle suspension,” International Journal of Systems Ap-
plications, Engineering & Development, vol. 3, no. 2, pp. 74-83,
2009.

[15] M. C. Popescu, “Three connectionist implementations of dynamic
programming for optimal control,” Journal of Advanced Research
in Fuzzy and Uncertain Systems, vol. 1, pp. 1-16, March 2009.

[16] F. Grofu and M. P. C. Vilan, “Sistem numeric pentru mentinerea
echilibrului unei bile aflata pe o tije orizontala,” in 10" Inter-
national Conference, Universitatea Constantin Brancusi, (Tg-Jiu,
Romania), November 2005.

[17] M. C. Popescu, N. M. 1. Borcosi, and L. Popescu, “Asynchronous
motors drive systems command with digital signal processor,” In-
ternational Journal of Systems Applications, Engineering & De-
velopment, vol. 3, no. 2, pp. 64-73, 20009.

[18] D. Comer and D. Stevens, Internetworking with TCP/IP:Client-
Server Programming and Applications, vol. IIl. New Jersey: Pren-
tice Hall, 1993.

[19] M. C. Popescu, O. Olaru, and N. Mastorakis, “Processing data for
colored noise using a dynamic state estimator,” WSEAS Transac-
tions on Communications, vol. 8, pp. 321-330, March 2009.

Marius-Constantin Popescu was born in Gorj —
Tismana, on the 19-th of may 1965. In 1990, has
gratuated the University of Craiova, Romania, Fac-
ulty of Automation and Computer and in 1995 he
graduated from the Faculty of Mathematics and In-
formatics, University of Craiova. Author and co-
author of 175 scientific papers, 10 textbook and 11
books. In 2003 has received scientific degree Ph.D, he is currently Asso-
ciate Professor of University of Craiova, Romania. Professional skills:
measurements in industrial processes, fuzzy system modeling, artificial
intelligence, optimization and automation of industrial processes, web
intelligence, intelligent communication network control.

Cristinel Popescu was born in Gorj, on the 28-th
of May 1967. In 1997, has graduated the Univer-
sity of Targu Jiu, Romania, Faculty of Power Sys-
tem. Author and co-author of 59 scientific papers,
and 6 books. In 2005 has received scientific degree
Ph.D., He is currently Associate Professor of Con-
stantin Brancusi University from Targu Jiu, Roma-
nia. Professional skills: electrical energy transport and distribution and
electrotechnic.

